
Activity Recognition on Kinect-3D Videos using 

Transfer Learning 
Deep Learning Final Project Report 

 

Jianhang Chen 

School of Electrical and Computer Engineering, Purdue University 

West Lafayette, IN  

chen2670@purdue.edu 

 
Abstract—This project is to develope an algorithm to recognize 

daily actions on 3D Kinect videos. The final result is generated by 

a combined CNN and LSTM network. After decided 

hyperparameters like sequence length and max frames by 

experiment first, we trained the network on UCF101 2D video 

dataset and fixed the CNN part and retrained LSTM on 3D 

dataset.  
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I.  INTRODUCTION  

In this project, we develop an algorithm to analyze videos to 
detect daily activities such as falling, grasping, running, sitting, 
etc. At first, we directly trained CNN+LSTM model on a 3D 
video dataset named TST FALL DETECTION DATASET V2 
[1], which is shown in Figure 1. Unfortunately, the result was 
unsatisfactory to classify daily activities. The reason of failing 
might be the limited number of videos (approx. 88x3 videos) for 
training. Finally, we pretrained an CNN+LSTM network on 
UCF101 2D dataset [2], shown in Figure 2, and transferred it to 
3D dataset. The validation accuracy of 3D videos is 52% and the 
test Accuracy of 3D videos is 46%. 

The following part consists of 4 sections: section II is a brief 
introduction to other work. In section III, we introduce three 
sessions in our final work in detail. Section IV is the results of 
our experiment and section V is discussion and conclusion. 

 

Figure 1 TST FALL DETECTION DATASET V2 

 

Figure 2 UCF101 activity dataset 

II. OTHER WORK 

There are several methods to classify videos. Andrej 
Karpathy, et al., [3] extended the connectivity of a CNN in time 
domain to train the network to understand the activities in 
videos. It has successfully classified video of all kinds of outdoor 
sports. Figure 3 shows the Multiresolution CNN architecture 
developed by Andrej Karpathy for video classification. But 
intuitively, it only uses the current image to identify activities, 
and doesn't explain how to build a CNN based model that spans 
a few or more images. 

Joe Yue-Hei Ng, et al., proposed a method explicitly models 
the video as an ordered sequence of frames [4]. The method 
employs a recurrent neural network that uses Long Short-Term 
Memory (LSTM) cells which are connected to the output of the 
underlying CNN. It shows that the use of LSTM's RNN (84.6%) 
may outperform the pure CNN model (72.6%). Figure 4 is the 
overview of CNN+LSTM approach by Joe Yue-Hei Ng, et al. In 
CNN, a large amount of information cannot be extracted if only 
from a single image that forms a video without considering the 
time sequence. Therefore, the similar method is chosen for this 
project except the optical flow information and feature pooling 
part. Our work is an extension of this method to depth images of 
3D videos from Kinect. 



 

Figure 3 Overview of the pure CNN approach 

 

 

Figure 4 Overview of the CNN+LSTM approach 

 

III. OUR CONTRIBUTION 

As mentioned above, we first directly trained our custom 
CNN feature extraction + LSTM model on a 3D video dataset 
named TST FALL DETECTION DATASET V2.  

Since we did not get satisfactory result, we implemented 3 
sessions to achieve our final goal for 3D video classification 
which is illustrated in Figure 5. First we selected hyper 
parameters including Sequence Length, Max Frames, Image 
Dimension and Epochs for training. Sequence Length is the 
number of frames to represent the video. Max Frames is the max 
number of frames of a qualified training video. We selected 
hyper parameters using pre-trained model of Inception v3[5] on 
UCF101 2D dataset. Then a small CNN network is trained to 
extract features along with a simple LSTM to train the sequence 
of features extracted representing the video. Finally, the trained 
CNN model is frozen (the weights are retained) and extracted 
features of the 3D videos from the CNN is fed into a simple 
LSTM for training. 

 

 

Figure 5 Overview of the 3 sessions of our work 

 

A. Hyper Parameter Selection 

1. Load the 2D video UCF dataset and partition it into images 
and save them. 

2. Split the extracted video dataset into Training and Testing 
according to the split version files provided with the dataset 

3. Select a sequence length that will represent a single video 
as a collection sequenced images 

4. Clean the dataset that needs to be loaded (i.e). If the no. of 
images for a video is less than sequence length, drop it. 

5. Load the images of a video in order but not exceed the 
sequence length (skip intermediate images) 

6. Extract features for each image in the sequence from the 
penultimate layer of pre-trained Inception v3 model and save 
them. 

7. Load the 2048 feature map of training dataset and 
validation dataset (a split from test dataset) 

8. Fit a simple LSTM model with no. of input as 2048 and 
output nodes as no. of classes 

9. Repeat the above process for various sequence length and 
max frames to get an optimized parameter with highest accuracy 
on test dataset. 

B. Model Selection 

1. Now, load the 2D video dataset using optimum hyper 
parameter found in previous step. 

2. Generator based data loading is used (since loading all the 
images causes memory overflow). Images are resized using 
Cubic Interpolation. 

3. Use a simple CNN model shown in Figure 1 to extract the 
features (Input is the normalized gray scale version of the RGB 
data). 

4. Feed the Output of CNN to a simple LSTM with the 
number of inputs as 512 and the number of output nodes as the 
number of classes 

Select Hyper 
Parameters

• Extract features using pretrained INCEPTION V3 on UCF101 2D video dataset 

• Train on a simple LSTM model with above features as input

• Try different hyper parameters to get the best test result

Train our own 
model

• Using hyper parameters selected above

• Retrain our own smaller CNN+LSTM network on UCF101 2D video dataset

• Save the weights for the CNN model part

Model Training 
for 3D videos

• Extract features using pretrained CNN model from last session

• Retrain LSTM on 3D video dataset



5. Train the combined model of CNN and LSTM together 
for the 2D video dataset 

6. Save the weights for the CNN model only. 

7. Test this model on the Test dataset 

Figure 6 Overview of the CNN architecture 

 

C. Model Training for 3D videos 

1. Load the 3D video files which are a sequence of binary 
files. 

2. Normalize the depth files to fit the previous data input. 

3. Extract features using the CNN model finalized in the 
previous method. 

4. Train the LSTM to fit the 3D videos on Training and 
Validation split 

5. Test its performance on the Test Split of the 3D dataset 

IV. RESULTS 

By our custom CNN+LSTM model, the validation accuracy 
of 3D videos is 52% and the test Accuracy of 3D videos is 46%. 

Figure 9 shows some of the best hyper parameters selected 
in experiment. We also tried sequence length like 1 or 100, but 
the result is not so good. 

Figure 8 and 9 shows sample results of 2D and 3D dataset. 

 
Figure 9 Hyper Parameters Selected 

 

 

Figure 8 Sample results of 2D dataset 

 

Figure 9 Sample results of 3D dataset 

 

V. DISCUSSION 

Concepts of Transfer Learning and RNN were understood 
through this project. We failed at first directly trained on 3D 
dataset. We also failed several times because we chose other 
hyper parameters. Through the experiment, we learned the 
significance of hyper parameters such as Sequence length, no. 
of Epochs and Max frames. Also, the Kinect could generate joint 
information of human body beside 3D depth data.  The inclusion 
of joint data for training LSTM could improve the accuracy in 
classifying 3D - videos to predict actions in daily activity.  

We use CNN+LSTM method which explicitly models the 
video as an ordered sequence of frames. This mothed could 
integrate information over time and have a better performance 
compared to pure CNN method. 
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Fully Connected Layer 2 – 512 hidden units
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